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Abstract. Although the nonlinear diffusion equation has been extensively studied and there exists substantial
literature in many diverse areas of science and technology, the number of exact concentration profiles is
nevertheless limited. In a recent article in this journal (Hill [1]) a brief review of known exact results is given, as
well as an elementary integration procedure which appears to be a general device for obtaining integrals associated
with similarity solutions. This paper extends the results given in [1] and for particular power law diffusivities c"
(such as m = -1/2, -1, -3/2 and -2) presents a number of new exact solutions obtained by fully integrating the
ordinary differential equations derived in [1]. In addition new results are found for a general nonlinear diffusion
equation which includes one-dimensional diffusion with an inhomogeneous and nonlinear diffusivity c"x" as well as
symmetric nonlinear diffusion in cylinders and spheres. Moreover by a separate and ad-hoc procedure a new
solution is obtained of the travelling wave type but with a variable wave speed. Some of the new exact solutions
obtained for one-dimensional nonlinear diffusion with power law diffusivities c are illustrated graphically.

1. Introduction

In a recent article [1] appearing in this journal, the second author has given an elementary
integration device for similarity solutions,

X1/(I+A)

c(x, t) = X
2
A/m(l+A) ( ), = t2 , (1.1)

of the nonlinear diffusion equation with power law diffusivity, namely

t x ( dax) ' (1.2)

where c(x, t) denotes concentration which is a function of position and time and where A
denotes an arbitrary constant such that A # -1. In [1], for a number of situations, some new
first integrals and a new "source-dipole" solution applicable to m = -4/3 are obtained. In
particular, the second order nonlinear ordinary differential equation for +(e) which results
from (1.1) and (1.2), is shown to admit first integrals for two values of A, namely

m m
i= - -- (1.3)m+2 ' m+l '

and these integrals are respectively

O mot 2<Obm + 1 2
+ = C1, (1.4)

X (m + 2) 2 (m + 2)2

qOm~ ' (2m + 3)m+ l
_

_ _ - (m + 1) 262 + 2(m + 1)2 C (1.5)
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where primes denote differentiation with respect to and Cl, C2 etc. are used throughout to
denote constants of integration. For C, zero, the well known source and dipole solutions
arise from (1.4) and (1.5) respectively. The purpose of this paper is to obtain a number of
new exact solutions of equations such as (1.4) and (1.5) with C1 non-zero for special values
of m. The reader is referred to [1] for a brief survey of known exact solutions for nonlinear
diffusion and also for an extensive list of references to the literature. As also noted in [1],
exact solutions of equations such as (1.2) are important because by making use of
comparison theorems, every solution of (1.2) is a possible bound for every other solution.
Moreover, exact solutions may be useful to check the accuracy of a numerical solution
scheme and may be important in identifying unusual and perhaps counterintuitive physical
phenomena such as the "waiting-time" phenomenon extensively discussed by Lacey, Ocken-
don and Tayler [3].

The general nonlinear and inhomogeneous diffusion equation

dc=X - Cmnac (1.6)at ax ( x) (1.6)

is also considered in [1] and it is shown that the similarity solution

X1/(l+A)

C(X, t)= XA/m (), = t/2 , (1.7)

where the constant A is defined by

2A
A= 1+ (n + l), (1.8)

admits the following first integrals

Atm_ 
t 2(1 - 1).P+1 (1 + A) 2

+ -- 4 = C, (1.9)[m + 2 - l(m + 1)- n] 2 2

¢)q ' 2[(m + 1)(1+ n - 2)+ n - 1] m + 1 (1 + A)2
(m+ 1) 2(l +n-2) + 2 = C1, (1.10)
(m + 1)2(/+ n - 2) ' 2

which correspond respectively to the two values of A,

A (m + 1)+n-m 2m- ( + n)(m +1)
m+2-(m+ 1)-n' (m+1)(n+l-2)

In this paper we also present a number of new exact solutions of (1.9) and (1.10) for C
non-zero.

We observe that all the first-order ordinary differential equations listed above take the
form

-A, 2 + B = C, (1.12)5"~~~~~~~~

for various constants A, and B. If C1 is zero then we may readily deduce the generalised
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source-dipole solution

O()= ( C 2 1- 2-mAl) (1.13)

provided that mA, 2. In the following section for Cl non-zero we describe in general terms
how special exact solutions of (1.12) can be obtained, either for special values of the index m
or the constant A 1 or both. In the subsequent two sections we provide further details of the
solutions appropriate to equations (1.2) and (1.6) respectively and for (1.2) we illustrate a
number of solutions graphically in the final section of the paper. In Section 5 we make one or
two general remarks relating to similarity solutions (1.1) of the nonlinear diffusion equation
(1.2) with power law diffusivity and we present a new exact solution not emanating from the
solution devices listed in the following section.

2. General methods for obtaining special exact solutions

In this section, with reference to the general equation (1.12) with C non-zero, we detail five
special exact solution procedures and then in the following two sections we give the precise
details which apply to (1.2) and (1.6).

(i) Solution for m = -1/2 via a Riccati equation

If m = -1/2 then the substitution , = 0-1/2 transforms (1.12) into the Riccati equation

BI6 Al -- ~ 2

=B 1 ( _2 1 2 (2.1)

and the further substitution = 2u'/C, u yields

(A - 2)u' B 1 C1
2 u=O. (2.2)

2 6 4

In the usual way, this equation is reduced to a standard Bessel equation by the trans-
formation

U(6) = V5aU(/32), a = 1 - A/4, 3 = IBiC 11/2/4, (2.3)

and there are two cases to consider. If BIC1 <0 then

v(z) = C3J, 2 (z) + C4 Ya/2(Z), (2.4)

while if B C, > 0 we have

v(z) = C3 ,/ 2(z) + C4KaI2(z), (2.5)

where in both cases z denotes /3 2 and the conventional terminology is adopted for the
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Bessel functions. Thus altogether the exact solution for (1.12) for m = -1/2 becomes

1 4/3a 1 dv
1I2 Cl -2z + dz' Z = 2' (2.6)

(Ai / 2 = -zz + dz 

and we note that the ratio dv/dz divided by v involves only one arbitrary constant

C2 = C4 /C3 .

(ii) Solution for m = -1 via a Bernoulli equation

If m -1 then (1.12) immediately gives the Bernoulli equation

'(l5 + ) = -B 1 , (2.7)

which with the substitution ¢ = -1 becomes

' +( c + Al) =B 1 e, (2.8)

which integrates to give

1 -A e C12/2 2 . (2.9)

This is the required general solution for (1.12) for m = -1 and for integer values of Al, the
integral can be evaluated explicitly.

(iii) Solution for A 1 zero from separation of variables

If Al is zero then trivially from (1.12) we have

62 fqb(se)
m dq2 _-J +C 2 , (2.10)

2 J (C - B 71) + C2

and again depending on the value of m, this integral can be further simplified.

(iv) Solution for A 1 = -1 and m = -2 from an Abel equation

If A1 = -1 and m = -2 then (1.12) becomes an Abel equation of the first kind, namely

, ' = -- + C , 2 - B1 3 , (2.11)

and the substitution 6 = (e) - gives the Abel equation of the second kind,

' + C1ip = -, (2.12)

which happens to be solvable by the transformation = 6p + C, . From (2.12) and this
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transformation we can readily deduce the Bernoulli equation

de _'Pet CB (, 2(2.13)

d* B1 B1

which has the general solution

1 e - C 2
/ 2B, V1 72/2B d + C+ , (2.14)

- - C e~2/2B1 + C2],

which together with

1= f - C, e2, (2.15)

constitutes the general solution in parametric form of (1.12) with A, = -1 and m= -2.

(v) Solution for A 1 = 1 and m = 1 from an Abel equation

This solution procedure applies only for equations (1.9) and (1.10) resulting from the
general nonlinear diffusion equation (1.6), because for both (1.4) and (1.5), A, is distinct
from unity when m = 1. From (1.12) with Al = m = 1 we have on setting ¢I = 4/e, the Abel
equation of the second kind

'+ -(C = -B 1 , (2.16)

which we solve by means of the transformation = ¢ + B, to obtain the Bernoulli
equation

dE _P Bl1
2

ad Cl 1Cl(2.17)
d* C, C1

On solving this equation in the usual way we obtain

1 e 2 ' 2C B. en /2cl di + C2, (2.18)

which together with

= t - B 2 , (2.19)

constitutes the general solution, in parametric form, of (1.12) with A, = m = 1.

3. New solutions for nonlinear diffusion

For definiteness we assume throughout that the arbitrary constant Cl appearing in (1.4) and
(1.5) is positive. Similar formulae can readily be obtained for the case when Cl is negative.
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(i) Solutions for m = -1/2

For equation (1.4) with m = -1/2 we have A1 = 4/3 and B1 = 8/9 which gives

2 1 /C 1/2

a 3' , (3.1)

and therefore the solution given by (2.5) and (2.6) becomes

1/2 3 C I 1_/3(Z ) + C2 1-1/3 (Z) 3 ' z 3 2

where the prime here denotes differentiation with respect to z. Equation (3.2) constitutes
the general solution for (1.1) with m = -1/2 and A = 1/3 and the concentration is given by

c(x, t)= = t2 (3.3)

Concentration curves for this solution are shown in Fig. 8 for C, = 1 and C2 zero.
For equation (1.5) with m = -1/2 we have A 1 = 8 and B1 = 2 so that

a = -1, = (2) /' (3.4)

and in this case the solution given by (2.5) and (2.6) becomes

1 (/2 = /2 2 sinh z + C2 cosh z 1 1 2 C) 1/2

1/2 c cosh z + C2 sinhz zJ ' (3.5)

and the concentration (1.1) for m = -1/2 and A = 1 yields

c(x, t) = OM = (X) (3.6)

we observe that for t tending to zero and infinity, 5 tends to infinity and zero respectively and
we have

4(o) = C,/2, (0) = 0. (3.7)

(ii) Solution for m = -1

For the nonlinear diffusion equation (1.2) giving rise to (1.4) and (1.5), only (1.4) is
meaningful for m = -1 and in this case we have A1 = B1 = 2 and on performing the
integration in (2.9) the similarity solution (1.1) with m = -1 and A = 1 becomes

c(x, t)= -C 2 te - Clx/2'
. (3.8)

This solution is shown graphically in Figs. 6 and 7 with C2 = 2 and C = 2 and C, = -2
respectively.
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(iii) Solution for m = -3/2

For (1.4) and (1.5) the coefficient A, can only be zero for equation (1.5) in which case
m = -3/2 and we have B. = 2 and (2.10) becomes

2 , 0(~)
2 =J 

3 1 2
(C - 2 (39)5

2 f(7) - 2,

which with the substitution 7/ = C T2/2 yields

2(2)32 f(2(/C,)/
2 d + C2 3.10)

2 C2(1 - 2) (3.10)

On integration we obtain

C2 2 1 + 2 (2/C(3.11)
+ C 01/2 C1 1-(20/C)l2 +11 C 2

where in this case the concentration given by (1.1) becomes

c(x, t) = , = (xt) . (3.12)
x

(iv) Solution for m = -2

Only (1.5) is meaningful for m = -2 and in this case we have A, = -1 and B = 1/2 so that
the parametric solution (2.14) and (2.15) becomes

= 2 C, I en dr1 + C2 , I = ( - C 2) - ', (3.13)

while in this case the concentration becomes

q( ) 1
c(x, t)= 2 xt12 (3.14)

4. New solutions for general nonlinear diffusion

In this section, with reference to (1.9) and (1.10) arising from the general nonlinear diffusion
equation (1.6), we detail various new exact solutions, assuming that C, in (1.9) and (1.10) is
non-zero. We comment that only the essential details are noted and that in general we leave
all the various special solutions which follow from our results for the interested reader to
evaluate explicitly for themselves.

(i) Solutions for m = -1/2

For m = -1/2 the two values of A given by (1.11) become

1+1+2n 2+l+n
A= 3- 2n A 2-I-n (4.1)3-1-2n 2-1-n
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and the corresponding values of A, and B associated with (1.9) and (1.10) become
respectively

4(1-1)
3-l-2n '

4(4 - - 3n)
A1 2-I-n

8

B = (3 - - 2n) 2
'

8
B1 = 

(2 - l - n)2 '

From these equations and (2.3) we may deduce the corresponding values of a and / which
apply in the general solution (2.6). These are respectively

2(1- n)
3-1-2n '

2(n - 1)
2-I- n

P=(C'2 1/2
1

3-1-2n 
(4.3)

Thus for these values of a and /3, new exact solutions of (1.6) are given by (1.7) and (2.6)
where v(z) is an expression of the form (2.5), assuming that Cl is positive.

(ii) Solution for m = -1

For m = -1, only equation (1.9) is meaningful and in this case we have A = (1 + n)l(1 - n)
while Al and B, are given by

1-1
A, =2 1-n'

2
B, = (1 -n) 2 '

(4.4)

Directly from the solution (2.9) with these values for Al and B, we obtain

OM r= -2 e2/2{ (1-n) T ec 2 dr + C2 , (4.5)

where p = (1- 1)/(1- n). If p is an integer then the integral in (4.5) can be obtained
explicitly. For example when p = 0 (namely = 1) we have

() = {C(l - n)2 + C 2 e C12/ . (4.6)

(iii) Solutions for A, zero

We observe that (1.9) and (1.10) have A, zero if = 1 and (m + 1)(l + n -2) = 1-n
respectively and in which case the corresponding values of A given by (1.11) become

l+n 3-n
1-nt 1 A 1-n

Interestingly enough both values give rise to the same value of B, namely

(4.7)

B, =2/(1 - n)2 ,

(4.2)

I/ C 12 1

=(2 2-1-n 

(4.8)
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and therefore the appropriate solutions of both (1.9) and (1.10) are given by (2.10) with B,
given by (4.8).

(iv) Solutions for A, = -1 and m = -2

For m = -2 we find that (1.9) and (1.10) have A1 = -1 provided that 1 = 2 - n and 1 = n
respectively and that the corresponding values of A given by (1.11) become

n 2-n
1-n 1-n

and again for both (1.9) and (1.10) we obtain the same value of B1, which is

B, = 1/2(1 - n)2 . (4.10)

Thus for m = -2 and = 2- n for (1.9) and l = n for (1.10) the solutions, in parametric
form, for both equations are given by (2.14) and (2.15) with the constant B1 given by (4.10).

(v) Solutions for A, = 1 and m = 1

For m = 1 we find that both (1.9) and (1.10) have A, = 1 only if n = 1 and in this case the
two values of A given by (1.11) coincide and we have

I 1
A= 1 B = 2(11)2 ' (4.11)

so that the solution to both (1.9) and (1.10) is given in parametric form by (2.18) and (2.19)
with Bl given by (4.11)2.

5. General remarks and ad-hoc new solution

In this section we make one or two general observations relating to similarity solutions (1.1)
of equation (1.2), which result in new travelling wave solutions applicable to m = -1/2.
From the general second-order nonlinear ordinary differential equation for 0(6) applying to
arbitrary A and which is given explicitly in [1], we can from the substitution z = m readily
deduce

zz"- A J + -- + 2 ' +A 1 - ,z = 0 (5.1)
m m e 2

where as usual primes denote differentiation with respect to 5. Because this equation
remains invariant under the one-parameter group

( = e , z = e2Ez , (5.2)

we make the transformation g = Z/e2 and following Jones [2] and Lacey, Ockendon and
Tayler [3] we introduce h = z'/ so that we have

z' = (h = 52g, + 2g , (5.3)
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and therefore

log =i h(g)- 2g + constant. (5.4)f h(g)-2g

Further, on using

dh
z"= h' + h = (h- 2g) d +h, (5.5)

it is not difficult to show that (5.1) becomes

h + 4A +3A+ 1)gh+2A( A +A-1 g2+ (A1) 2 h dh = m5 2
dg g(2g - h)

By postulating simple forms for h(g) it is possible to deduce exact solutions. For example
suppose that h(g) = a where a is a constant then we find that this is a valid solution of (5.6)
provided m = -3/2, A = -3 and a = 3 and in which case equation (5.4) and z = S2 g yield

3 2
Z = 2 + constant, (5.7)

which is just the dipole solution for m = -3/2. Similarly, if we assume h(g) = a + bg where
a and b are constants then we find from (5.6)

a m(A + 1)2
, b=- ma (5.8)

2 (m+1)'

while A must take on either of the values (1.3). Thus in this case, this particular assumed
form simply generates the standard source and dipole solutions. In order to deduce a new
solution by this process we assume h(g) = agn and from (5.6) we readily obtain a = 12 and
n = 2 and valid only for m = -1/2 and A = -3/5. From (5.4) we have

g = (6 - C 2) - 1 , (5.9)

where C is a constant while from m = 2g we obtain

0(6) = (6/C 2 _ C) 2
, (5.10)

and finally from (1.1) with m = -1/2 and A= -3/5 we may deduce

c(x, t)= (6t-Cx) 2 (5.11)
x

This new travelling wave solution with a variable speed can be further generalized by
directly looking for a solution of (1.2) of the form

(5.12)c(x, t) = I;(X)[t - G(x)]n 
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From (1.2) and (5.12) we may deduce

nFon- 1 = (FmF')' (m+l)n - n[Fm+G" + 2(m + 1)Fm F'G'] ~(m+l)n-1

+ n[(m + 1)n - 1]Fm+lG'2(m + l)n- 2 , (5.13)

where ; = t - G(x) and primes here denote differentiation with respect to x. From (5.13) it
is apparent that n = (m + 1)-' and n = 2 so we require m = -1/2 and we have

(F-l'2F')' = 2F, G' = C1 IF, (5.14)

where C1 is a constant. On introducing H = F1 2 , (5.14), and its first integral become

H = H 2, H2 = H3 + C2 , (5.15)

and therefore

fH(x) dH
- f(x - x 0), (5.16)f (2H3/3 + C2 )1/2 = -XO) (5.16)

where x0 is a constant and the integral can, if necessary, be expressed in terms of elliptic
functions. The solution (5.11) emerges from (5.15)2 by taking C2 zero, thus

/2, 1 / 2 32
H'= ± () /H32, (5.17)

from which we may readily deduce

36 Cl(x - Xo) S

F(x)= 3( X o)4 G(x)= 180 + C3 , (5.18)

which can be reconciled with (5.11) in a straightforward manner.

6. Numerical results

In this section we briefly illustrate concentration profiles for some of the new solutions. First,
however, we note that all the new solutions obtained apply for negative m and in general the
behaviour of solutions of (1.2) for m positive and negative is quite distinct. To illustrate this
point Figs. 1 and 2 show the source solution

1 2m/(t+2) m2 /m
c(x, t)= (c 2 m/(+ 2) m + 2 )) (6.1)

where = x(m+ 2 )/2 /tl/2 , for C = 1 and m = 1 and m = -1 respectively. Clearly for m = 1 and
in general m positive there is a free boundary moving with finite velocity while for m = -1
there is an instantaneous spread of concentration and no free boundary. This behaviour
occurs only for -2 < m < 0 since the solution is not defined for m = -2 and has singularities
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1

x

x

Fig. 1. Behaviour of classical source solution (equation (6.1)) for C = 1 and m = 1.
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Fig. 2. Behaviour of classical source solution (equation (6.1)) for C = 1 and m = -1.
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Fig. 3. Behaviour of classical dipole solution (equation (6.2)) for C = 1 and m = 1.
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Fig. 4. Behaviour of classical dipole solution (equation (6.2)) for C = 1 and m = -1/2.
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1.

1.

1.

1.

1.
x

c

- - - t=.3
... t=.2

t=. 

Fig. 5. Behaviour of "source-dipole" solution (equation (6.3)) for C = 1 and applying for m = -4/3
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Fig. 6. Behaviour of new solution (equation (3.8)) for C, = C2 = 2 and applying for m = -1.
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Fig. 7. Behaviour of
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new solution (equation (3.8)) for C1 = -2 and C2 = 2 and applying for m = -1.

Fig. 8. Behaviour of new solution (equation (3.2)) for Cl = 1 and C2 zero and applying for m = -1/2.
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for m < -2. Similarly Figs. 3 and 4 show the dipole solution

X 2(m + 2) '
c(x, t) = - (Cfm(3±2m)l(m+1)2 - ) (6.2)

where = x(m+l)/tl/2 , for C= 1 and m = 1 and m =-1/2 respectively. Similar comments
apply here except that the behaviour shown in Fig. 4 for m = -1/2 generally applies for m
such that -1 < m <0. The new solution derived in [1] and applying to m = -4/3 is shown in
Fig. 5. This solution is a combined "source-dipole" solution and the various values for
constants used in Fig. 5 are chosen to locate the dipole at the origin and the source at x = 3.
In the notation of [1] we have a = 1, , = 1 and A = -4 so that xl = 3 and x2 = 0 and the new
solution becomes

1 ( 9t )3/4
c(xt) x 2 (x - 3)2+ 9Ct3x2) ' (6.3)

and the curves in Fig. 5 are for C = 1.
The new solution (3.8) which applies for m = -1 is shown in Figs. 6 and 7 for C2 = 2 and

C1 = 2 and C = -2 respectively. This new solution of (1.4) applies for A = -m/(m + 2)
which is also the value of A appropriate to the source solution (6.1). It is therefore not
surprising that the new solution has source solution like characteristics, except that the
maximum concentration is not fixed at the origin but moves with time such that if C, is
positive, it moves to the right while if Cl is negative, it moves to the left. This behaviour is
shown in Figs. 6 and 7. We note that for the new solution (3.8) the problem of singularities is
avoided provided the constants C1 and C2 are such that C2C2> 4. The new solution (3.2)
which applies for m = -1/2 is shown in Fig. 8 for Cl = 1 and C2 zero. This solution also
originates from (1.4) and exhibits source like behaviour away from the origin and has the
property that the concentration is zero at the origin for all the time.
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